
Time Management Update
AMG-16

December 17, 1996

Richard Fujimoto
Georgia Institute of Technology

Time Management Update

• Joint meeting with Data Distribution and Management (DDM) Group,
12/16/96

• Time Management Topics

– Synchronized Data Distribution & Management (status report)

– Zero lookahead and repeatable executions (changes to support
zero lookahead, while maintaining repeatability)

Synchronized DDM: Problem Description
DDM: For each state update, which federates receive messages?

• example: a federate that can “see” a tank should be notified of the tank’s
position updates

• set of destinations for attribute updates changes during the execution

Currently: DDM changes take effect everywhere at an instant in wallclock time
• federate time same as wallclock time (modulo offset, scale factor)
• all federates at (approx.) same federate time at any instant during the execution
• DDM changes (who receives messages?) take effect at an instant in wallclock time
• implementation: immediately realize changes (e.g., modify multicast groups) for all

affected federates, ideally in a single instant of wallclock time
• currently supported in baseline HLA

federate time (= wallclock time)

Fed. B: blue tank

Fed. A: red tank

red tank becomes visible to blue tank at
wallclock time 10 (e.g., blue tank updates its
subscription region)

10

blue tank begins receiving position updates at
wallclock time 10

Example: Two tanks (red and blue) approaching each other in a DIS-style federation

Synchronized DDM: Problem Description (cont.)

Logical time federation: DDM semantics based on logical time
• different federates are at different logical times at any instant during

the execution

• DDM changes take effect at a specific instant in logical time

• unless precautions are taken, a federate may not receive messages it
should have received (or it may receive messages it shouldn’t have
received)

• logical time based DDM not currently supported in baseline HLA

federate time (= logical time)

Fed. B: blue tank

Fed. A: red tank

red tank becomes visible to blue tank at
logical time 10

blue tank has not yet reached logical time 10,
RTI cannot know blue tank will be able to see it.
red tank position is not sent to blue tank!

10

A Solution Approach
• RTI maintains log of messages, sends them to federates as needed
• RTI may also retract previously sent messages

position update message is logged,
but is not sent to blue tank

red tank becomes visible at logical time 10
(blue tank changes subscription region)
RTI retrieves message from log and sends to blue tank

federate time (= logical time)

Fed. B: blue tank

Fed. A: red tank

10

federate time (= logical time)

Fed. B: blue tank

Fed. A: red tank

10

Later in the execution:

log

log

Current Status

Two additional solution approaches have been identified that do not
require message logs, but place some additional constraints on
federates

• require lookahead to “set up” filter changes before updates can occur
(constrains when updates are generated)

• require federate to query other federates to receive “missed”
information

Prototyping Efforts
• Initial prototype using logging implemented at Georgia Tech,

experimentation in progress

• Other approaches still under development

Zero Lookahead and Repeatability:
Requirements

• allow zero lookahead
• repeatability: must be possible to build federations that produce the

same results on each execution (analytic federations)

– accounting purposes, facilitate debugging

– in general, execution will be repeatable if:

• same initial conditions and external inputs provided
• event processing computation in each federate is repeatable

• each federate processes events in time stamp order, and

• events containing the same time stamp (simultaneous events)
are processed in the same order in each execution

• Federation control of simultaneous events: The proper ordering of
simultaneous events should be controlled by federates, not the RTI

• Avoidance of logical time creep (performance issue)

– already addressed in Version F.0 of the RTI

Issue: repeatable, federate controlled ordering of simultaneous events

Current Approach (Repeatability): Non-Zero Lookahead
• RTI delivers all simultaneous events before issuing a Time Advance

Grant (requires non-zero lookahead)
• Federate sorts simultaneous events containing the same time stamp

in a repeatable fashion, and processes events in that order

• Above provides sufficient capability for (1) repeatable executions, and
(2) federate controlled ordering of simultaneous events

The “rub”: with zero lookahead, RTI cannot guarantee delivery of all
simultaneous events with time stamp T when issuing a Time Advance
Grant to time T

Federate
A

Federate
B

RTI

1. RTI issues Time
 Advance Grant
 to time T

2. Federate A sends a zero lookahead
 message (time stamp T) requesting
 information from another federate

3. Federate B sends reply message
 with time stamp T (zero lookahead)
 to Federate A.

Extensions to Support Zero Lookahead

• Existing services (Next Event Request, Time Advance Request) remain
the same
– grant to time T guarantees delivery of all messages w/ time stamp T

– constraint: once a Time Advance Grant to time T is issued for these
requests, all subsequent messages sent by the federate must have
time stamp strictly greater than T.

• Two new services:

– Next Event Request Available and Time Advance Request Available
– Same as Next Event Request and Time Advance Request except

grant to logical time T does not guarantee delivery of all events with
time stamp T

– Federate may send new messages with time stamp equal to T (zero
lookahead)

• federate defined “ordering parameter” under consideration

• “upward compatibility” with existing RTI prototypes important

Prototyping experiments under development

